

Plate Based Fuel Processing System

David Yee
Catalytica Energy Systems, Inc.
May 25 – 27, 2004

This presentation does not contain any proprietary or confidential information

Project Objectives

- Develop new catalytic reactor designs and reactor technology for processing gasoline to PEM quality H₂
 - Develop improved catalyst materials compatible with these reactor systems
- Design and fabricate prototype units for each reactor at the 2 to 10kW(e) scale
 - Demonstrate steady state and transient performance
 - Evaluate rapid start up performance

Budget

Total Funding

DOE Funding \$ 8.16 million

CESI Funding \$ 3.50 million

Program Total \$11.66 million

FY04 Funding

DOE Funding \$ 2.11 million

CESI Funding \$ 0.91 million

FY04 Total \$ 3.02 million

Technical Barriers and Targets

- DOE Technical Barriers for Fuel-Flexible Fuel Processors
 - I. Fuel Processor Startup/Transient Operation
 - J. Durability
 - L. Hydrogen Purification/Carbon Monoxide Cleanup
 - M. Fuel Processor System Integration and Efficiency
 - N. Cost
- DOE Technical Targets for Fuel-Flexible Fuel Processors in 2010
 - Energy efficiency 80%
 - Power density 800 W/L
 - Specific power 800 W/kg
 - Cost \$10/kWe
 - Cold startup time to maximum power < 1 min at -20°C (< 0.5 min at +20°C ambient)
 - Durability 5000 hours
 - CO content in product stream < 10 ppm steady state (< 100 ppm transient)

Approach

Project Timeline

Fuel Processing Approach

Tier 2, 30 ppm sulfur (average) gasoline

Process heat provided by catalytic combustion of gasoline or anode purge gas (outlet ~70% H₂ & 16% CO dry basis)

Absorption trapping—required level to be specified (initial target <0.1 ppm S)

20% CO at inlet with 80% conversion

1% CO at inlet with <10 ppm CO at outlet

CESI Reactor Approach

Major components based on plate-type heat exchangers

First Steam Reformer Prototype Fabrication

- Utilize plates from an existing heat exchanger design from a gas turbine recuperator (7.5 mil = 0.2 mm thick).
- Cut one-tenth sector (shaded region) to fabricate a simple prototype.
 - Reaction area per plate is small (5.5 by 15 cm) requiring significant number of plates to achieved desired output.

 Utilized CESI coating knowledge to successfully develop a coating process.

Developed a plate welding process.

Plate Reactor Design

3 kW(e) Prototype Hardware

3 kW(e) = 32 plate pairs = 7.3 cm

3 kW(e) Prototype Performance

Steam Reformer start-up achieved within 80 seconds Experimental data validates predictive model

Reforming & Combustion Catalysts Kinetic Model

Experimentally determined kinetics to support modeling effort

$$r = \frac{dN_{c1}}{Wdt} = k_0 \cdot \exp(\frac{-E_A}{RT}) \cdot y^a_{cs}$$
1.0
0.9
0.7
0.6
0.5
0.4
0 100 200 WHSV, h⁻¹
800°C

$$r = \frac{dC_{HC}}{Wdt} = k_0 \cdot \exp(\frac{-E_A}{RT}) \cdot y^a_{HC} \cdot y^b_{o2} \cdot y^c_{co2}$$
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0 50 100 150 200
WHSV, h⁻¹

Power rate law expression fits experimental data

Water Gas Shift

- Modeled parameters to reduce WGS reactor volume
 - All plate reactor based designs
 - Kinetics based on experimental measurements

	Range Studied	Base Case	Optimized Case
Number of stages	1 or 2	1	1
Flow Pattern	Co or counter current	Co-current	Co-current
Molar Flow Ratio (cooling/reformate)	0.5 to 2.0	2.0	1.5
Inlet Temperature	235°C to 295°C	275°C	250°C
CO Abatement	80% to 90%	90%	80%
Catalytica WGS Volume		36.1 L	19.1 L

WGS volume reduced by 47% to 19.1 L for 50 kW(e)

800-hour PrOx Catalyst Durability Test

Constant WHSV

No degradation of catalyst performance after 800 h on stream

System Performance

Current CESI's system performance versus DOE targets

		2010 target	2005 target	CESI 2004	Comments
Energy efficiency	%	80	78	75	integrated heat management calculated from PRO/II SimSci software
Power density	W/L	800	700	1,650	reactor components only
Specific power	W/kg	800	700	1,400	reactor components only
Cost	\$/kW(e)	10	25	21	precious metal costs only
Cold start-up time	S	60	120	80	steam reformer start-up only
Durability	h	5,000	4,000	> 5,000	thermal stress analysis

Interactions and Collaborations

- Argonne National Laboratory
 - Ted Krause Water Gas Shift catalyst
- Pacific Northwest National Laboratory
 - Greg Whyatt Microchannel Vaporizer
- Plate Fabricators
 - Several commercial companies
- National Fuel Cell Research Center, UC Irvine
 - Professor Scott Samuelsen Competitive Technology and Market Assessment for the Production of a Hydrogen-Containing Stream for Use in PEM Fuel Cells

Reviewer's Comments

- Energy costs of starting needs to be addressed
 - Modeled several start-up scenarios
 - Evaluated energy costs of alternative start-up heating scenarios
- Sulfur management critical to all fuel processing options
 - All sulfur compounds are converted to H₂S in the reformer
 - H₂S easily reduced to required level by current commercial technology
- Large size of WGS suggest this should be a focus
 - Modeled alternative reactor configurations to identify performance requirements to significantly reduce WGS reactor volume

Future Work

Remainder of FY 2004

- Fabricate and test more commercial plate reactor prototype design
- Develop more energy efficient start-up strategies
- Fabricate and test PrOx plate reactor prototype
- Demonstrate reforming catalyst durability
- Develop alternative WGS reactor concepts to further reduce reactor volume

• FY 2005

- Fabricate and test low cost & commercially viable plate reactor prototype design
- Fabricate and test WGS reactor prototype
- Demonstrate WGS durability